9,055 research outputs found

    An integrated omic approach towards the metabolic engineering of myrcene pathway of pseudomonas sp. M1

    Get PDF
    Best Poster AwardPseudomonas sp. M1 is able to utilize a large variety of toxic and/or recalcitrant compounds as sole carbon and energy sources, including phenols, benzene and monoterpenes like myrcene [1-3]. Therefore, M1 strain holds great potential as a source of novel biomolecules and cell factories for various biotechnological applications namely in biocatalysis, biosensors, bioremediation and biomedicine. However, the full exploitation of its enzymatic repertoire requires detailed and integrated information about the biomolecular catalog of M1 strain, including genes, proteins and metabolites. In this context, the genome of Pseudomonas sp. M1 was sequenced by NGS technologies, using Illumina GA IIx and Roche 454 FLX. The resulting raw data was assembled and annotated using different pipelines. The current genome draft of Pseudomonas sp. M1 has an estimated GC content of 67%, a size of about 7.1 Mbps and includes 6276 CDS. Importantly, in silico genome analysis predicted a number of metabolic pathways involved in utilization/biotransformation of several unusual carbons sources (e.g. biphenyls, halophenols and different monoterpenes). Proteomic and transcriptomic approaches have been setup envisaging the elucidation of the myrcene stimulon. In 2009, a set of myrcene-dependent proteins has been described using subproteome analysis of the cytoplasmic fraction [3]. In this work, a RNA-seq transcriptome analysis led to the identification of a 28kb genomic island of key importance in the catabolism of myrcene. This island includes genes involved in: i) myrcene oxidation and bioconversion of myrcene derivatives via a beta-oxidation like pathway; ii) regulation of myrcene pathway; iii) myrcene sensing. In addition several other gene clusters spread in the genome of Pseudomonas sp. M1 have been found to be myrcene-dependently expressed and are under investigation. Integration of genomic, transcriptomic, proteomic and metabolic data will deliver a very solid and detailed description of the myrcene catabolism (and other monoterpenes), and on the associated molecular mechanisms of adaptation, providing the adequate support for the application of M1 as a biocatalyst in whole-cell biotransformations of plantderived volatiles.Fundação para a Ciência e a Tecnologia (FCT

    Towards the metabolic engineering of myrcene pathway of pseudomonas sp. M1 using an integrated omic approach

    Get PDF
    Pseudomonas sp. M1, isolated from the Rhine River, is able to utilize a large variety of toxic and/or recalcitrant compounds as sole carbon and energy sources, including phenols, benzene and monoterpenes like myrcene [1-3]. Therefore, M1 strain holds great potential as a source of novel biomolecules and cell factories for various biotechnological applications namely in biocatalysis, biosensors, bioremediation and biomedicine. However, the full exploitation of its enzymatic repertoire requires detailed and integrated information about the biomolecular catalog of M1 strain, including genes, proteins and metabolites. In this context, the genome of Pseudomonas sp. M1 was sequenced by NGS technologies, using Illumina Genome Analyser IIx and Roche 454 FLX. The resulting raw data was assembled into 41 contigs and annotated using different pipelines. The current genome draft of Pseudomonas sp. M1 has an estimated GC content of 67%, a size of about 6.9 Mbps and includes 6214 CDS. Importantly, in silico genome analysis predicted a number of metabolic pathways involved in utilization/biotransformation of several unusual carbons sources (e.g. biphenyls, halophenols and different monoterpenes). Proteomic and transcriptomic approaches have been setup envisaging the elucidation of the myrcene stimulon. In 2009, a set of myrcene-dependent proteins has been described using subproteome analysis of the cytoplasmic fraction [3]. More recently, a RNA-seq transcriptome analysis led to the identification of a 28kb genomic island of key importance in the catabolism of myrcene. This island includes genes involved in: i) myrcene oxidation and bioconversion of myrcene derivatives via a beta-oxidation like pathway; ii) regulation of myrcene pathway; iii) myrcene sensing. In addition several other gene clusters spread in the genome of Pseudomonas sp. M1 have been found to be myrcene-dependently expressed and are currently being characterized. Integration of genomic, transcriptomic, proteomic and metabolic data (which is currently being setup) will deliver a very solid and detailed description of the myrcene catabolism (and other monoterpenes), and on the associated molecular mechanisms of adaptation, providing the adequate support for the application of M1 as a biocatalyst in whole-cell biotransformations of plant-derived volatiles.Fundação para a Ciência e a Tecnologia (FCT

    Using the Language of Wellbeing in the Care of the Elderly in Mexico

    Get PDF
    The language we use with others derives from hidden assumptions about them and commands expectations and outcomes. That is why the constructs and language used in health services provided to the elderly are a worthwhile object of study.This paper addresses the language used in the services provided to the elderly population in Mexico and many other Latin-American countries. The psychological, linguistic and practical aspects of the wellbeing language paradigm are discussed. The linguistic analysis of the discourse used by health care providers conveys important implications to the kind, quality and purpose of intervention.It is argued that by using the language of wellness, health professionals are in a better position to listen and assess the degree of satisfaction and happiness, to explore for conditions that may promote or hinder quality of life, and also, they are in a better position for planning services to the elderly that reach beyond physical health and economic indicators.It is posited that quality of life in old age is incomplete without a sense of the patient’s wellbeing

    Finding new physics without learning about it: anomaly detection as a tool for searches at colliders

    Get PDF
    In this paper we propose a new strategy, based on anomaly detection methods, to search for new physics phenomena at colliders independently of the details of such new events. For this purpose, machine learning techniques are trained using Standard Model events, with the corresponding outputs being sensitive to physics beyond it. We explore three novel AD methods in HEP: Isolation Forest, Histogram-Based Outlier Detection, and Deep Support Vector Data Description; alongside the most customary Autoencoder. In order to evaluate the sensitivity of the proposed approach, predictions from specific new physics models are considered and compared to those achieved when using fully supervised deep neural networks. A comparison between shallow and deep anomaly detection techniques is also presented. Our results demonstrate the potential of semi-supervised anomaly detection techniques to extensively explore the present and future hadron colliders' data.We thank Guilherme Milhano, Maria Ramos and Guilherme Guedes for the careful reading of the manuscript and for the useful discussions. We also thank Ana Peixoto and Tiago Vale for providing the MadGraph cards used for the simulation of the beyond the Standard Model samples. We acknowledge the support from FCT Portugal, Lisboa2020, Compete2020, Portugal2020 and FEDER under project PTDC/FIS-PAR/29147/2017. The computational part of this work was supported by INCD (funded by FCT and FEDER under the project 01/SAICT/2016 nr. 022153) and by the Minho Advanced Computing Center (MACC). The Titan Xp GPU card used for the training of the Deep Neural Networks developed for this project was kindly donated by the NVIDIA Corporation

    Integrated sizing and scheduling of wind/PV/diesel/battery isolated systems

    Get PDF
    In this paper we address the optimal sizing and scheduling of isolated hybrid systems using an optimization framework. The hybrid system features wind and photovoltaic conversion systems, batteries and diesel backup generators to supply electricity demand. A Mixed-Integer Linear Programming formulation is used to model system behavior over a time horizon of one year, considering hourly changes in both the availability of renewable resources and energy demand. The optimal solution is achieved with respect to the minimization of the levelized cost of energy (LCOE) over a lifetime of 20 years. Results for a case study show that the most economical solution features all four postulated subsystems

    Current advances in the bacterial toolbox for the biotechnological production of monoterpene-based aroma compounds

    Get PDF
    Monoterpenes are plant secondary metabolites, widely used in industrial processes as precursors of important aroma compounds, such as vanillin and (−)-menthol. However, the physicochemical properties of monoterpenes make difficult their conventional conversion into value-added aromas. Biocatalysis, either by using whole cells or enzymes, may overcome such drawbacks in terms of purity of the final product, ecological and economic constraints of the current catalysis processes or extraction from plant material. In particular, the ability of oxidative enzymes (e.g., oxygenases) to modify the monoterpene backbone, with high regio- and stereo-selectivity, is attractive for the production of “natural” aromas for the flavor and fragrances industries. We review the research efforts carried out in the molecular analysis of bacterial monoterpene catabolic pathways and biochemical characterization of the respective key oxidative enzymes, with particular focus on the most relevant precursors, β-pinene, limonene and β-myrcene. The presented overview of the current state of art demonstrates that the specialized enzymatic repertoires of monoterpene-catabolizing bacteria are expanding the toolbox towards the tailored and sustainable biotechnological production of values-added aroma compounds (e.g., isonovalal, α-terpineol, and carvone isomers) whose implementation must be supported by the current advances in systems biology and metabolic engineering approaches.This work was supported by the project VALEU (PTDC/EAM-AMB/30488/2017); by the strategic program UID/BIA/04050/2019 through the Fundação para a Ciência e a Tecnologia (FCT) I.P.; and by the European Regional Development Fund (ERDF) through the COMPETE2020-Programa Operacional Competitividade e Internacionalização (POCI). The work was also supported by a Ph.D grant (grant number PD/BD/146184/2019) to F.S

    Seeking theta's desperately: Estimating the distribution of consumers under increasing block rates

    Get PDF
    This paper shows that the distribution of observed consumption is not a good proxy for the distribution of heterogeneous consumers when the current tariff is an increasing block tariff. We use a two step method to recover the "true" distribution of consumers. First, we estimate the demand function induced by the current tariff. Second, using the demand system, we specify the distribution of consumers as a function of observed consumption to recover the true distribution. Finally, we design a new two-part tariff which allows us to evaluate the equity of the existence of an increasing block tariff.Heterogeneous demand, nonlinear pricing

    Explorando la regeneración de la mordenita en la reacción de carbonilación de dimetiléter

    Get PDF
    Dimethyl ether carbonylation (DME) to produce methyl acetate (MA) over mordenite catalysts is attracting much attention because of its high selectivity. However, acidic mordenite suffers from a fast deactivation (coking) that has not been properly studied. In the present work, we study the regeneration of the catalyst in several cycles aiming to help the future industrial application of mordenite catalysts in MA production. Both diluted and pure air have been successfully tested for the regeneration of the catalyst. The results show that 1) there is no negative effect after several regeneration cycles and 2) there is a slight improvement of catalyst productivity after the first regeneration cycle. A possible explanation to these results, which is highlighted in this work, is that the catalyst structure is not affected during regeneration while there is an initial migration of Al from the mordenite structure to extra-framework positions.Ministerio de Economía y Competitividad, BIOTER project, Proyecto I+D Retos ENE2012-31598Ministerio de Economía y Competitividad, Universidad de Sevilla, Juan de la Cierva IJCI-2017-3283

    Edible films as oral delivery systems for xanthines extracted from medicinal plants: an experimental design approach

    Get PDF
    Two formulations of edible films intended for oral delivery of therapeutic xanthines were developed, following an experimental design approach. Gelatin type A and sodium carboxymethylcellulose were used as polymeric matrices with different physico-chemical nature. Caffeine, a well-known methylxhanthine, was used as model bioactive molecule, representing overall xanthines (e.g. caffeine, theophylline, theobromine) extracted from medicinal plants. Fourier-transform infrared spectroscopy (FTIR) analysis was performed to outwit the formation of covalent bonds between caffeine and the matrix of edible films. Scanning electron microscopy (SEM) was performed to assess if caffeine was homogeneously dispersed on the matrix of edible films. Simulation of gastrointestinal tract and ex vivo permeability studies across intestinal mucosa were performed to predict the delivery profile of caffeine from developed formulations of edible films. Gelatin type A-based edible films offered a slow release of caffeine whereas sodium carboxymethylcellulose-based edible films promote an immediate release of caffeine.info:eu-repo/semantics/publishedVersio
    corecore